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J.  Phys. A: Math. Gen. 20 (1987) 1587-1597. Printed in the U K  

Exact solution of the integrable XXZ Heisenberg model with 
arbitrary spin: 11. Thermodynamics of the system 

A N Kirillov and N Yu Reshetikhin 
LOMI, Fontanka 27, Leningrad, 191011, USSR 

Received 4 March 1986 

Abstract. The thermodynamics of the integrable generalisation of the X X Z  Heisenberg 
model with arbitrary spin is studied. The low- and high-temperature heat capacities and 
magnetic susceptibility are computed. 

1. Introduction 

In the previous paper (Kirillov and Reshetikhin 1987) we obtained the thermodynamic 
equations of the X X Z  model with spin S. This model describes an anisotropic spin- 
S chain with nearest-neighbour interactions. The Hamiltonian of the model was given 
in the paper mentioned above. 

Let us define the following sequences starting from the anisotropy parameter y 
(see Takahashi and Suzuki 1972) 

r + a ~  

F ( H ,  T I = -  (-l)r"'aj,~s(A)Tlog[l+exp(-P&j(A))] dh 
jrl J -a 

where E ~ ( A )  are the solutions of the following system: 

~~~EcI,.J,( A ) + njH - T log[ 1 + exp(PEj ) I  f Ajk * T log[ 1 + exp( -PEk)] = 0. 
k a l  

Here * is the convolution of functions, H is the magnetic field, T is the temperature 
and E = * l .  The functions aj ,2s(A) and Ajk(A) are given by their Fourier transforms: 

djk (x ) = A k j  (x) = 2â k (x)  (x )  + ( -1 ) r( '6 k,m, + I j.ma + I - 1 k s j  (1.8) 
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where 

1 
2 cosh( plx) 

$ ( X )  = 

sinh( qjx) 
sinh( pox) 

6j( x) = 

(1.10) 

(1.11) 

where U is connected with the value of spin by 1 + 2 S  = n,. 
We use the following normalisation of the Fourier transform 

+s 

?(XI = exp(-iAx)f(A) dA. (1.13) 

Our aim in the present work is to study the thermodynamic equations described 
above. Following the methods developed by Takahashi and Suzuki (1972), Tsvelick 
and Wiegmann (1983) and Yang and Yang (1966) we compute the asymptotics of the 
heat capacities in the low- and high-temperature limits and magnetic susceptibility in 
a small magnetic field. 

dx  
f ( A )  = 1 exp(iAx)?(x)- 

--3c 277 --ir 

+m 

2. Computation of the specific heat in the low- and high-temperature limits 

Let us start by transforming our basic system (1.7) in a way that is convenient for our 
fupher computations. To this end divide the set of indices j in (1.7) into three groups: 

{ j o }  = { m l  I i = r +  l(mod 2 ) ,  is r +  l}  
E = (-1)‘ { j , } = { m , s j <  m, l i =  r +  l(mod 2), is r +  I} 

{ j J  = (1 sj< - 1 I j a  {jdu 
(2.1) 

{j,} = { ml ,  U - 1 I i = r(mod 2), i s r }  
E = ( - l ) r+ l  { j , }  = {mt- ,  sj < m, 1 i = r(mod 2 ) ,  i C  r }  

1 
i {j,} = 11 s j  < mu+, - 1 I j a  {io} U { j J } .  

Recall that indices label the so-called strings which describe the solutions of Bethe’s 
equation in the thermodynamic limit. The division (2.1) is in accordance with the role 
of different strings in the composition of the ground state and excitations over it. 

We regard (1.7) as a system of equations for the functions eJ{,(A), &,,(A), eJ2(A). In 
order to study their low-temperature behaviour we first invent the kernel AkOJo and 
then invert the kernel Ai%) in the resulting system. We obtain the following equations: 

- A::i:’ * log[ 1 + e x p ( - P ~ ~ , ) ]  -c A::<’ * log[l + exp(- /3~~J]  (2.2) 
k l  k: 
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1 
- ~ j ~ ’ = l o g [ l + e x p ( P ~ , , ) ] + ~  Allli:’ * log[l + e x p ( - P ~ ~ , ) ]  
T k l  

Here P = 1/T, x = m,+, if E = ( - l ) r  and x = U -  1 if E = ( - l ) r + l  and the kernels 
B‘“”’ are given in appendix 1. Explicit formulae for A‘””’ and E)’’ (which are the 
energies of the j strings) are given in our previous paper (Kirillov and Reshetikhin 
1987). The value of z determines the spin renormalisation 

z = (-l)r(x’po/qx. (2.5) 

Using the system (2.2)-(2.4) the expression for the free energy (1.6) may be trans- 
formed to the following form: 

F (  H, T)  = go(0) -2 
+, 

&::’(A) T log[l + e x p ( P ~ , ~ ( A ) ]  dA 
10 --uI 

r +Jc 

where 8,(0) is the ground-state energy at H = O  (see Kirillov and Reshetikhin 1987). 
Let us consider first the low-temperature limit in which H + 0, T + 0 and y = H/ T 

is fixed. We introduce the functions (see Babujian 1982, Tsvelick and Wiegmann 1983) 

p,(A)=-&, T ( A --log i, T ) m,-2Gj<ml (2.7) 

whereat& =(- l ) ‘wehavex ,=  7 r / 2 p I f o r ( m o d 2 ) , i ~ r + 1  a n d ~ , = 7 r / 2 p ~ + ~ f o r i a r + 3 ,  
at E = (-l)’+’ we have x, = 7r/tp, for i = r(mod 2), i s  r, and x, = 7r/2pr+, for i r + 2 .  

From (2.2)-(2.4) we obtain a set of non-linear integral equations for the functions 
cp,(A) which depend only on y at T - 0 .  This system is almost of the same form as 
the system (2.2)-(2.4), the difference being that H/ T and &;‘’(A - ( l / x , )  log T ) /  T are 
replaced by y and l,(A),  respectively. Here we denote by !,(A) the asymptotics of 
(l/T)&;’’[A - ( l / x , )  log TI dt T+O: 

(2.10) 

Here i = r + l ( m o d 2 ) ,  i < r + 1  if ~ = ( - l ) ~  and i = r ( m o d 2 ) ,  i s r  if ~ = ( - l ) ~ + ’ .  
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Substituting (2.7) into the formula (2.6) we obtain the low-temperature asymptotics 
of the free energy: 

F ( H ,  T )  - 
+m 

= - T * z  1 I,(A)Tlog[l+exp(cpjo(A))]dA 
j n  -e 

(2.11) 

We can now obtain the specific heat of the system by using the general formulae 

eH = - T (  $) = - T (  $) H (2.12) 

Unfortunately, these formulae are not effective at finite y. We cannot solve explicitly 
a set of non-linear integral equations in this case. However, the leading term of the 
low-temperature asymptotics of CH may be calculated exactly at H = 0. To this end, 
let us find the low-temperature asymptotics of the entropy which are given by the 
following expression: 

r + m  

A comparison of equations (4.23), (4.31) and (4.32) from the paper of Kirillov and 
Reshetikhin (1987) and (2.2)-(2.4) yields at [ A I  + CO the following asymptotic relations: 

(2.14) 

(2.15) 

where f( E )  = (1 +eE)-’ is the Fermi function and xi have been defined earlier. 

term of its asymptotics as T + 0 

s = - (-1)rW- Iv’@) [ f ( c p )  logf(cp)+(l - f ( c p ) )  

where the functions cpj(A) are defined by (2.7). 
Let us introduce the notation bj = cpJ(m), cj = cpj(-cm) and replace the integration 

over dcp in (2.16) by integration over df(cp). Now the expression (2.16) can be 
rewritten in terms of the dilogarithmic Rogers function (see, for example, Levin 1958) 

Substituting these relations into the expression for the entropy we obtain the leading 

-f(cp))I dcp (2.16) 
jr 1 2PoXi p,(-m) 

(2.17) 

(2.18) 
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The constants bj and cj are determined from the system (2.2)-(2.4). To describe 
them it is useful to introduce a standard sequence b j (po )  which is defined by 

(2.19) 

(2.20) Ye Yo 
Y o + ,  Y,+l  

f (bma+, - l (Po) )  =- f(bmm+,(Po)) = 1 -- 

where po  is a fixed rational number and the numbers nj and y i  are given by (1.1)-( 1.5). 
The set bj are the standard sequence for p o  = P/ y, bi = bi( P/ y ) .  The set cj depends 

on the structure of the Dirac sea. If E = ( - l ) ,  then we get the following expression 
for f ( cj): 

f(cm,) = 1 i =  r +  l(mod 2) i s  r +  1 (2.21) 

f (c j )=O m i - l d j < m i  (2.22) 

f(cj) =sin2 ( - * )[ sin2 ( ~ ( j + ~ ) ) ] - l  - m i - 2 < j < m i - l  bi-2 + 2 bi-2 + 2 

If E =(- l ) ,+ '  the sequencef(cj) is slightly different: 

f(Gli)  = 1 i = r(mod 2) i 4 r 

f ( c - 1 )  = 1 f ( cj 1 = 0 m i - l  4 j < mi 
- I  f(cj) =sin2(-)[sin'(-)] d j + l )  

f(cj)=sin'( * )[sin'( d j +  1) ) I - '  m , < j < a - l  

bi-2 + 2 bi-2 + 2 

a + l - m ,  c r+ l -m,  

The function L ( x )  is known to satisfy the functional equations 

L ( x ) +  L( 1 - x )  O < X < l  

They imply that the following sum is equal to zero: 

c ( -1) '"'L(f(b,(po)))=O. 
j Z  I 

In appendix 2 another useful sum is calculated: 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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Using these formulae we obtain from (2.18) an  explicit expression for the low- 
temperature asymptotics of the entropy: 

e = ( - l ) r  (2.34) PI b,-2 
i s r + ~  PO b,-,+2 1 i=r+?mod2)-  ~ 

S = T T  

+- E = ( - l ) r t ' ,  (2.35) 
, s r  PO b,-2+2 po u + I - m ,  

r s r ( m o d 2 )  

These formulae hold whenever r = 1, e = - 1 .  In that case we have simply 

s = TT( Po-  1 ) /3po .  (2.36) 

Substituting the low-temperature asymptotics of the entropy into (2.12) we obtain the 
specific heat CH at T + 0, H = 0. 

The structure of these expressions is quite natural from the point of view of Fermi 
liquid theory (see, for example, Tsvelick and  Wiegmann 1983). In the case when the 
Dirac sea is filled by strings of different sorts, there is a corresponding number of 
Fermi liquids with different sound velocities (see formula (4.14) from the paper by 
Kirillov and  Reshetikhin (1987)). To each sort of Fermi liquid there corresponds a 
contribution of fixed length strings to the Dirac sea. The low-temperature specific heat 
is simply the sum of the specific heats of all Fermi liquids. 

In the paper by Babujian (1982), the following formula was obtained for low 
temperature asymptotics of the entropy for the isotropic Heisenberg model with higher 
spin S :  

2 T  4T2S-2 ( sin2[rr/(2S+2)] s=-+- c L . 
3 r2 k = 2  s i n 2 [ ~ k / ( 2 S + 2 ) ]  

Using (2.34) we calculate the exact value of this sum 

S = -  2s T. 
s + l  

(2.37) 

(2.38) 

The Hamiltonian of the isotropic Heisenberg model may be obtained from the 
Hamiltonian of the X X Z  model we are considering in the limit po  + a3 at E = - 1 ,  r = 0. 
In this limit formula (2.38) follows from (2.35) modulo the normalisation factor 7r/2p0, 
which is due to a different normalisation of the Hamiltonian adopted by Babujian 
(1982). 

In order to investigate the high-temperature limit it is convenient to use equations 
(1.6) and (1.7). Let us consider the limit T +  a, H + oc for fixed ratio H /  T. It is not 
difficult to find the leading term of asymptotics for the solution of the system (1.7) in 
this limit (see Takahashi and  Suzuki 1972) 

After substitution of these results into (1.6) we obtain 

(2.39) 

(2.40) 

r 

F (  H, T )  = - f T  log( 1 + ?(,0,))-4T log( 1 + ~ i y I l ) +  O( 1) .  (2.41) 
, = I  
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Using (1.4) we obtain for the free energy the following simple answer: 

) + 0 ( 1 )  E = * l .  (2.42) 
sinh[ ( H / 2 T )  no] 

sinh( H / 2  T )  
F (  H, T )  = - T log 

This formula, together with (2.12), gives the high-temperature asymptotics of the 

Let us point out that (2.42) at H << T gives the following expression for the entropy: 

(2.43) 

This result is naturally interpreted as the completeness of the Bethe vector multiplet. 
The number of Bethe vectors at T-,  o;, is equal to exp(c+) = ( 2 S +  l ) N  in the thermo- 
dynamical limit. 

specific heat. 

(T = NS = N log( 1 + 2s ) .  

3. The magnetic susceptbility at small magnetic field 

In this section we compute the magnetic susceptbility in the X X Z  model at small 
magnetic field. We shall consider only the bases when the Dirac sea consists of only 
one sort of string. It is easy to see that this is the case only when E and r have the 
following values: 

(i) E = 1, r = 0 

(ii) ~ = - l , r = O  (3.1) 
( i i i )  E = 1 ,  r =  1. 

From (2.6) at T-,  0 we obtain a useful expression for the ground-state energy 

Here j o  denotes the different sorts of sea strings, B,, are defined by the conditions 

' J " (  B,n) = ( 3 . 3 )  
and &::'(A) are the energies of the j o  strings (see Kirillov and Reshetikhin 1987). The 
functions &,,,(A) are the solutions of the system (2.2) at T =  0. In our case there is only 
one term on the right-hand side and j o  = m ,  , (T - 1 or m2. 

The equation for the function E , ~ ( A )  has the following form: 

(3.4) 

where z is the renormalisation of the spin: 

and the Fourier transform of the &:,:'(A ) and 1 + J,, = Bj,;:' are given in our previous 
paper: 

.. sinh( p o x )  sinh x sinh( p o x )  
l + J m , ( x ) =  

2 sinh x cosh[ ( po  - l ) x ]  + J m 2 ( x )  = 2 sinh( p z x )  sinh( box)  cosh x 
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sinh( pox) sinh x 

2sinh[(po-a+ l )x]  sinh[(c.r- l )x]  cosh x 1 + L I ( X )  = 

*(O) sinh[(a- 1)x)] 
Em'(X)=2Posinhx cosh[(po- l )x]  
$0)  PO ,.CO, sinh[(a- m,)p,x] 

sinh( pzx) cosh x ' m,(x) = 2Po u - I ( X )  =- cosh x (3.7) 

We are interested in the limit H -0  in which B+w. In  this limit equation (3.4) 
turns to the Wiener-Hopf type equation for the function E~,(A + E )  (see Yang and 
Yang 1966): 

Let us introduce the functions 

g i (x)  = f exp(iAx)&,(A + B )  dA. 

Using the Wiener-Hopf method one can obtain the function .6i(x) explicitly: 

5: 
+m dx' G-(x')Z):)(x') exp(-iBx') z iHG-(O) +- 

x'-x-io 2 x+iO 

(3.9) 

(3.10) 

Here the functions G,(x) are analytic and nowhere zero in the upper (lower) half-plane 
normalised by the condition G,(m) = 1 and are the solutions of the factorisation 
problem 

1 +J,(x) = G;I(x)G?(x) G-(x) = G+(-x). (3.11) 

The main contribution to the integral in (3.10) at B + 00 is given by the pole ix,, of 
the function .6)f)(x), which is the nearest pole to the real axis, and the expression (3.10) 
is simplified: 

iJth exp( -xjuB) +- - 
2 x+iO 

- G+(ix,). 
x + i xj,, 

.6i(x) = G+(x) (3.12) 

Here J th=resx+ .6j,:)(x) and xjo are given by (2.7). 
It is not diffich to see that 

eJU( B) = lim ixsi(x).  (3.13) 
x-m 

From this equality and (3.3) one finds the relation between H and B 

G+(ixjJ Jtju H = 2  - exp( -x,,B). 
G-(O) z 

(3.14) 

For B - 00 the ground-state energy (3.2) may be expressed in terms of the function 
.6;,t,(x, 

1 
Po 

= --A,, exp( -xjl,B) 2i,(ixjll). (3.15) 
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Using representation (3.12) for the i i ( x )  we obtain the leading term of the 
asymptotics of go( H) at H + 0: 

Eo( H) - ifO(O) = - H 2 + .  . * .  
8Pox,o S:,;:) (0) 

(3.16) 

So to calculate the magnetic susceptibility x = -d2g0( H)/dH2 at H = 0 one does 
not need the exact expression of G,(x). In (3.16) present only & ~ ~ ' ( O )  and for x we 
have the following expression: 

1 U - 1  b0 (ii)  =- (iii) xm2 = -. 
7T p,-Cr+l "P2 

Po- 1 
(i)  X m ,  =- 

7T 
(3.17) 

Iterating equation (3.4) one can obtain the next terms of the asymptotics of x ( H )  
at H + 0 (see Yang and Yang 1966, Babujian 1982). 

In the cases when the Dirac sea consists of more than one sort of string the task 
of calculating the magnetic susceptibility reduces to the matrix factorisation problem. 
In the present paper we do not consider this case. 
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Appendix 1 

It is convenient to define the kernels B$," by their Fourier transforms. We consider 
only the case when E = (-1)'. The second case E = ( - l ) r + '  may be considered in a 
similar way in accordance with the formulae of appendix 3 from the paper by Kirillov 
and Reshetikhin (1987). The matrices A;?'' = A'' &,; ') and A$." may be found in 

following form: 
the abovementioned appendix. The matrices ' Bjk* 4 2 )  (x),  B$*"(X) and &"(x) have the 

( A l . l )  

(A1.2) 

(A1.3) 

(A1.4) 



Appendix 2 

Let us consider the function 

L ( r , 6 ) = R e L ( r e i e )  

t r 2 )  

where L ( x )  is the Rogers dilogarithmic function defined by (2.17). 
The function L(r, 6 )  has the following properties: 

L(-1, 6 ) = $ 0 2 - & 7 r 2  OSOS7T 

L( 1,O) =$( 7T - 6 ) 2  -AT2 OSOS7T 

cp+6 + L  - - ,cp+O 2 1 2  

sin cp 

) ( 
L(-) sin' cp = 2 6 p + 2 L ( -  sin( cp - 6 )  

sin2 6 sin 6 
The formulae (A2.1)-(A2.4) may be proved by the differentiation 

right-hand sides of these equalities. For example, let us prove (A2.4). 
that 

(A2.1) 

(A2.2) 

(A2.3) 

t o ) .  (A2.4) 

of the left- and 
It is easy to see 

r-cos 
lrl)  dr  

log(l-2rcos 6 + r 2 )  1 +- log 

+[-tan-'( r s i n e  )+!log 

r 2 1 - 2 r c o s 6 + r 2  

r sin 6 
1 - r c o s 6  2 1 - 2 r c o s 6 + r 2  

So, we have 

sin( cp + 6 )  
sin 6 

sin cp 

Similarly, one can prove that 

" L ( 2 )  =cot cp log( sin( cp - 6 )  sin( cp + 6 )  
dQ sin2 6 



Integrable X X Z  Heisenberg model: I1 1597 

Comparing these formulae one can see that the derivatives of the left- and right-hand 
sides of (A2.4) over cp coincide. The equality (A2.4) may now be deduced from (A2.1). 
From (A2.4) it follows that 

0 s cp + ( m  + 1) 8 s T. (A2.5) 

Let us take cp = 0, ( m  + l)O = H ,  n = m + 1 in this equality. After some easy transforma- 
tions we obtain the equality (2.34). 
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